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TECHNICAL NOTE: STEADY FLOW IN A CURVED PIPE WITH A 
COAXIAL CORE 

M. A. PETRAKIS AND G. T. KARAHALIOS 
Deparhnent of Physics, University of Patras, Patras 261 10, Greece 

SUMMARY 

In this paper we study the steady annular flow of a viscous fluid into an annular pipe and discuss the effects of the 
size of the core on the flow properties. 
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Annular flow is an important feature in double-pipe heat exchangers and in chemical mixing and 
drying machinery. This type of flow involving heat transfer has been studied by Karahalios’ and Choi 
and Park,’ while previous investigation has been mainly focused on the axial flow between concentric 

In the present work we consider an annular pipe coiled in a circle of radius L about the axis Oz. Let a 
be the radius of the inner pipe and ka (k > 1) the radius of the outer pipe. The flow is steady, 
incompressible and fully developed and the ratio ka/L is assumed small. We use a toroidal co-ordinate 
system r*, 8,$ (Figure 1) to describe the equations of motion. In this system the velocity components 
are U, Vand W respectively. Let -8p/a$ be the pressure gradient. Introducing the non-dimensional 
variables 

r* = kar, u = vu/ka, v = vv/ka, w = v[L/2(ka)3]”2w 

and setting 

Figure 1. Toroidal co-ordinate system 
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so that the equation of continuity is identically satisfied, we obtain the equations of motion 
V f = - R ,  2 

where V2 is the Laplacian operator in polar co-ordinates, 

is the Dean number of the flow and 

In the previous notation, f is the streamfunction of the flow and R is the vorticity. The conditions 
satisfied by the parameters of the flow are 

w = f  = - = O  af a t r = l a n d l / k .  
ar 

w(r, -0) = w(r, 0), 
while f = R = aW/aQ = 0 on the line itself. The equations of motion have been solved numerically 
according to a method described by Allen and Southwell' and worked out by Dennis:' as follows. 
Equation ( 2 )  is separated into two equations 

In addition, the symmetry condition about the line 0 = 0, n implies that 

f ( r ,  -8) = -f ( r ,  0), R(r ,  -0) = -R(r, O), 

a2w law aw -+-- - u- = A @ ,  8 )  - D, ar2 r ar ar 

a2w aw 
-- rv-  = -3A(r ,  e), ae2 a8 

where A(r, 0) is an unknown function. After lengthy manipulations, A(r, 0) is eliminated and the 
following equation for w is derived: 

mlwl + m2w2 + m3w3 + m4w4 - mowo + h2D, 

where 

h 1  uih2 
m3 = 1 --+-u 2 0 h +8' 

2r0 

(4) 

h A = -  2 A 2  1 2 2 

6 4  g 
m o = 2 + - + - h  ( u O + ~ ) ,  
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and the subscripts follow the Southwell notation, in which all quantities at the point (ro, 0,) and the 
neighbouring points (ro + h, e), (ro, 0, + g), (ro - h, 0,) and (r,, 0, - g) are denoted by the subscripts 
0, 1, 2, 3 and 4 respectively. Treating equation (1) in the same way, we obtain 

A 
2 r0 

m,R, + m 2 0 2  + m 3 0 ,  + m4R4 - moRo - (wI - w3) sin so + -(w2 - w4) cos 8, 

The boundary conditions for ZZ are 

on the outher boundary r =  1 and 

for r = l / k .  Finally, equation (3), approximated by central differences about the point (ro, do) ,  takes 
the form 

with boundary conditions f = 0 on r = 1 and Ilk. Equations (4H6) were solved numerically by the 
SOR method at all internal points of the upper annular region l /k  < r < 1 , O  < 0 < n. The iterative 
scheme was repeated until the adopted criterion of accuracy for w, 

was satisfied. The superscript s denotes successive iterates. For the other two variable ZZ andfthe same 
criterion of accuracy was adopted. The sequence was terminated when all quantities had converged to 
limits. 

Figure 2. Variation in w with r 
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Figure 3. Isovelocity contours for &(a) 2 and (b) 10 

In Figure 2 we show the axial velocity profile along the line of symmetry 8 = 0, n for k = 10 and 
for various values of the Dean number D. The form of these curves is in satisfactory agreement with 
the corresponding curves taken for flow in a plain curved tube. The axial velocity contours are shown 
in Figure 3(a) for a large core radius and in Figure 3(b) for a smaller core radius. In the first of these 
plots it is realized that there develops a central inviscid region in which the axial isovelocity lines 
become parallel over a significant part of this region. For larger axialkcore radius the isovelocity curves 
close to the boundaries are circles concentric to them, while the centrihgal force drives the fluid to the 
outer part of the bend, thus forming separate loops there. 
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Figure 4. Secondary flow streamhe pattern for k=(a) 2 and (b) 10 

The curves of constant streamhction f are shown in Figures 4(a) and 4(b) for k= 2 and 10 
respectively. The formation of the four vortices is a consequence of the viscous character of the Stokes 
boundary layers that are formed along the two boundaries. In the outer layer the pressure gradient is 
not balanced by the centrihgal force acting on the fluid. In fact, the pressure gradient remains 
unchanged while w tends to zero as the pipe wall is approached. As a result, a secondary flow is 
generated within this layer. The fluid moves from the outside of the bend to the inside along the pipe 
wall and closes its cycle by moving along the line 8 = 0, n. Along this line the recirculating fluid of the 
upper half meets at 8 = n the recirculating fluid of the lower half. The two jets impact and move along 
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Figure 5.  Variation in position d of w,, with Dean number D 

the pre-referred line of symmetry. The generation of the inner vortex close to the axial core is again 
attributed to the non-balance of the pre-referred forces. The fluid is moving along the core wall from 
8 = 0 to n and at an intermediate point it reverses its direction of motion since its strength is 
overwhelmed by the strength of the outer vortex. 

In Figure 5 we show the variation in the position of the maximum axial velocity w,, with D for 
various values of the radius ratio k. The maximum axial velocity occurs on the line of symmetry 
8 = 0,  n. In this figure, results given by Collins and Dennis,' Akiyama and Cheng' and Adler" are 
also presented for comparison. Here d denotes the non-dimensional distance of the position of w,, 
from the centre of the cross-section of the pipe. The agreement of the results of the present study with 
those of Collins and Dennis' is good. 

In conclusion, the presence of a core affects the flow properties, especially for a large Dean number. 
The formation of the pair of inner vortices suggests that instability may occur above some finite Dean 
number. The question of bifurcation and stability will be addressed in a future study. 

APPENDIX: NOTATION 

radius of core 
modified Dean number 
streamfunction 
constant pressure gradient 
grid sizes 
radius ratio 
radius of curvature of pipe 
pressure 
dimensionless toroidal components 
dimensional components of velocity 
dimensionless components of velocity 
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Greek letters and other symbols 

P coefficient of viscosity 
V kinematic viscosity 
P density of fluid 
R dimensionless vorticity 
V Laplacian operator 

I hlg 
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